Discrete Fourier Transform

- **FS (Fourier Series)**
 - All Periodic Waves Can be Generated by Combining Sin and Cos Waves of Different Frequencies
 - DFT (Discrete FT)
 - The DFT pair
 \[x[k] = \sum_{n=0}^{N-1} x[n] e^{-j2\pi nk/N} \]
 \[X[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{j2\pi nk/N} \]
 - Complexity in terms of real operations
 - \(4N \) real multiplications
 - \(2N(N-1) \) real additions
 - Most fast methods are based on symmetry properties
 - Conjugate symmetry
 - Periodicity in \(n \) and \(k \)
 - FFT (Fast Fourier Transform)
 - FFT is a very efficient algorithm for performing a DFT.
 - FFT algorithm published by Cooley & Tukey in 1965.
 - In 1969, the 2048 point analysis of a seismic trace took 13½ hours.
 - Using the FFT, the same task on the same machine took 2.4 seconds!

Decimation-In-Time FFT Algorithms

- Makes use of both symmetry and periodicity
 - Consider special case of \(N \) an integer power of 2
 - Separate \(x[n] \) into two sequence of length \(N/2 \)
 - Even indexed samples in the first sequence
 - Odd indexed samples in the other sequence
 - Substitute variables \(n=2r \) for \(n \) even and \(n=2r+1 \) for odd
 - \(X[k] = \sum_{n=0}^{N/2-1} x[2r] e^{-j2\pi nk/N} + \sum_{n=0}^{N/2-1} x[2r+1] e^{j2\pi nk/N} \)
 - Substitute variables \(n=2r \) for \(n \) even and \(n=2r+1 \) for odd
 - \(X[k] = \sum_{n=0}^{N/2-1} x[2r] W^{2r} + \sum_{n=0}^{N/2-1} x[2r+1] W^{2r+1} \)
 - \(G[k] = W^k \)
 - \(G(k) \) and \(H(k) \) are the \(N/2 \)-point DFTs of each subsequence
 - Complexity
 - \(\log_2 N \) complex multiplications and additions
 - Bit reversed indexing
 - \(x[001] = x[00] \)
 - \(x[011] = x[10] \)
8-point DFT example

Iterative-FFT Code

```plaintext
BIT-REVERSE-COPY(a, A)

ITERATIVE-FFT

BIT-REVERSE-COPY(a, A)

ITERATIVE-FFT

Nyquist frequency

• The Nyquist frequency is equal to one-half of the sampling frequency.

Sampling rate = 256 samples/second
Sampling duration = 1 second

Example

• Cos function

• Sinc function

• Gamma function

The Nyquist frequency is equal to one-half of the sampling frequency.

x(t) = 5sin(2πt)
Amplitude = 5
Frequency = 4 Hz
Effect of changing sample rate

Measuring multiple frequencies